Random Variable Reference


Discrete Random Variables

Bernoulli Random Variable

Notation: XBern(p)
Description: A boolean variable that is 1 with probability p
Parameters: p, the probability that X=1.
Support: x is either 0 or 1
PMF equation: P(X=x)={pif x=11pif x=0
Expectation: E[X]=p
Variance: Var(X)=p(1p)
PMF graph:
Parameter p:

Binomial Random Variable

Notation: XBin(n,p)
Description: Number of "successes" in n identical, independent experiments each with probability of success p.
Parameters: n{0,1,}, the number of experiments.
p[0,1], the probability that a single experiment gives a "success".
Support: x{0,1,,n}
PMF equation: P(X=x)=(nx)px(1p)nx
Expectation: E[X]=np
Variance: Var(X)=np(1p)
PMF graph:
Parameter n:
Parameter p:

Poisson Random Variable

Notation: XPoi(λ)
Description: Number of events in a fixed time frame if (a) the events occur with a constant mean rate and (b) they occur independently of time since last event.
Parameters: λ{0,1,}, the constant average rate.
Support: x{0,1,}
PMF equation: P(X=x)=λxeλx!
Expectation: E[X]=λ
Variance: Var(X)=λ
PMF graph:
Parameter λ:

Geometric Random Variable

Notation: XGeo(p)
Description: Number of experiments until a success. Assumes independent experiments each with probability of success p.
Parameters: p[0,1], the probability that a single experiment gives a "success".
Support: x{1,,}
PMF equation: P(X=x)=(1p)x1p
Expectation: E[X]=1p
Variance: Var(X)=1pp2
PMF graph:
Parameter p:

Negative Binomial Random Variable

Notation: XNegBin(r,p)
Description: Number of experiments until r successes. Assumes each experiment is independent with probability of success p.
Parameters: r>0, the number of success we are waiting for.
p[0,1], the probability that a single experiment gives a "success".
Support: x{r,,}
PMF equation: P(X=x)=(x1r1)pr(1p)xr
Expectation: E[X]=rp
Variance: Var(X)=r(1p)p2
PMF graph:
Parameter r:
Parameter p:

Continuous Random Variables

Uniform Random Variable

Notation: XUni(α,β)
Description: A continuous random variable that takes on values, with equal likelihood, between α and β
Parameters: αR, the minimum value of the variable.
βR, β>α, the maximum value of the variable.
Support: x[α,β]
PDF equation: f(x)={1βαfor x[α,β]0else
CDF equation: F(x)={xαβαfor x[α,β]0for x<α1for x>β
Expectation: E[X]=12(α+β)
Variance: Var(X)=112(βα)2
PDF graph:
Parameter α:
Parameter β:

Exponential Random Variable

Notation: XExp(λ)
Description: Time until next events if (a) the events occur with a constant mean rate and (b) they occur independently of time since last event.
Parameters: λ{0,1,}, the constant average rate.
Support: xR+
PDF equation: f(x)=λeλx
CDF equation: F(x)=1eλx
Expectation: E[X]=1/λ
Variance: Var(X)=1/λ2
PDF graph:
Parameter λ:

Normal (aka Gaussian) Random Variable

Notation: XN(μ,σ2)
Description: A common, naturally occuring distribution.
Parameters: μR, the mean.
σ2R, the variance.
Support: xR
PDF equation: f(x)=1σ2πe12(xμσ)2
CDF equation: F(x)=ϕ(xμσ)Where ϕ is the CDF of the standard normal
Expectation: E[X]=μ
Variance: Var(X)=σ2
PDF graph:
Parameter μ:
Parameter σ:

Beta Random Variable

Notation: XBeta(a,b)
Description: A belief distribution over the value of a probability p from a Binomial distribution after observing a+1 successes and b+1 fails.
Parameters: a{1,}, the number successes + 1
b{1,}, the number of fails + 1
Support: x[0,1]
PDF equation: f(x)=Bxa1(1x)b1
CDF equation: No closed form
Expectation: E[X]=aa+b
Variance: Var(X)=ab(a+b)2(a+b+1)
PDF graph:
Parameter a:
Parameter b: