$\DeclareMathOperator{\p}{P}$ $\DeclareMathOperator{\P}{P}$ $\DeclareMathOperator{\c}{^C}$ $\DeclareMathOperator{\or}{ or}$ $\DeclareMathOperator{\and}{ and}$ $\DeclareMathOperator{\var}{Var}$ $\DeclareMathOperator{\Var}{Var}$ $\DeclareMathOperator{\Std}{Std}$ $\DeclareMathOperator{\E}{E}$ $\DeclareMathOperator{\std}{Std}$ $\DeclareMathOperator{\Ber}{Bern}$ $\DeclareMathOperator{\Bin}{Bin}$ $\DeclareMathOperator{\Poi}{Poi}$ $\DeclareMathOperator{\Uni}{Uni}$ $\DeclareMathOperator{\Geo}{Geo}$ $\DeclareMathOperator{\NegBin}{NegBin}$ $\DeclareMathOperator{\Beta}{Beta}$ $\DeclareMathOperator{\Exp}{Exp}$ $\DeclareMathOperator{\N}{N}$ $\DeclareMathOperator{\R}{\mathbb{R}}$ $\DeclareMathOperator*{\argmax}{arg\,max}$ $\newcommand{\d}{\, d}$

More Discrete Distributions


Stub: Chapter coming soon!

Geometric Random Variable

Notation: $X \sim \Geo(p)$
Description: Number of experiments until a success. Assumes independent experiments each with probability of success $p$.
Parameters: $p \in [0, 1]$, the probability that a single experiment gives a "success".
Support: $x \in \{1, \dots, \infty\}$
PMF equation: $$\p(X=x) = (1-p)^{x-1} p$$
Expectation: $\E[X] = \frac{1}{p}$
Variance: $\var(X) = \frac{1-p}{p^2}$
PMF graph:
Parameter $p$:

Negative Binomial Random Variable

Notation: $X \sim \NegBin(r, p)$
Description: Number of experiments until $r$ successes. Assumes each experiment is independent with probability of success $p$.
Parameters: $r > 0$, the number of success we are waiting for.
$p \in [0, 1]$, the probability that a single experiment gives a "success".
Support: $x \in \{r, \dots, \infty\}$
PMF equation: $$\p(X=x) = {x - 1 \choose r - 1}p^r(1-p)^{x-r}$$
Expectation: $\E[X] = \frac{r}{p}$
Variance: $\var(X) = \frac{r \cdot (1-p)}{p^2}$
PMF graph:
Parameter $r$:
Parameter $p$: